Research

Built upon an interdisciplinary foundation, my research integrates biophysics and organismal biology to understand the functionality and emergence of complex functional systems in nature. That is, how specific physical and mechanistic principles underlie the origination of novel designs under natural selection, as well as how they govern the diversification of organismal design. To address these questions fundamentally relevant to the organization of biological systems, my research integrates biomechanical experiments and modeling at the interface of organismal biology and biophysics. With a life-long interest in natural history (especially invertebrates, amphibians and reptiles), I have worked with multiple model systems across a range of size scales (arthropods, bacteria, hagfish cells). 

Evolutionary biomechanics of insect flight

The evolutionary transition between wingless and full-winged insects consists of complex organization of functional modules across multiple levels. I developed a model system using the stick insects (Phasmatodea) to address various questions regarding the evolution of insect flight. Following a recent work on the evolution of flight-related morphology (https://www.biorxiv.org/content/10.1101/774067v2), more is coming soon.

Evolutionary biomechanics of jointed locomotor systems

Diverse jointed appendages provide a rich system for studying adaptation and generating bio-inspiration. I’m particularly interested in jointed designs specialized for maneuvering. See my work on aerial righting in wingless insects and legged maneuver in flat spiders.

Interfacial fluid mechanics and evolution of novel morphologies

A pioneer study on locomotion of bacterial aggregates. More details coming soon.